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Abstract

We prove that for any a-mixing stationary process the hitting time of any n-string A, converges,
when suitably normalized, to an exponential law. We identify the normalization constant A(A;). A similar
statement holds also for the return time.

To establish this result we prove two other results of independent interest. First, we show a relation
between the rescaled hitting time and the rescaled return time, generalizing a theorem of Haydn, Lacroix
and Vaienti. Second, we show that for positive entropy systems, the probability of observing any n-string in
n consecutive observations goes to zero as n goes to infinity.
© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

The study of the statistical properties of the time elapsed until the occurrence of an observable
of positive measure in a stationary stochastic process and/or in a measure preserving dynamical
system is a classical subject. The starting point of this study is the famous Poincaré recurrence
theorem which states that in an ergodic system, any set of positive measure appears in the process
infinitely many times. This is a qualitative result in the sense that no statistical properties of these
returns are established. In the last twenty years many notions of return have been introduced
and studied. These notions depend on the initial conditions, the observed set, and the measure
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of the system. There was intensive interest in studying their statistical properties to model
physical phenomena like intermittency and metastability. Then, the applications were extended
to other areas such biology, linguistics and computer science, to describe phenomena like gene
occurrence in DNA and protein sequences, the rhythm of a language and data compression
algorithms, to mention just some of them.

In the present paper we consider a fixed set A of positive measure ©(A) in an ergodic system.
When the evolution starts outside A, the time elapsed until the first occurrence of the set is
referred to as the hitting time of A. When the evolution starts inside A, the time is referred as the
return time to A.

Our main result is that under the so called « or strongly mixing condition, the distribution of
the hitting time of a set A can be well approximated by an exponential law. The approximation
is in the supremum norm in the space of distribution functions. Although the exponential law is
a classical subject our result is new and interesting:

(a) Our result holds for any cylinder set, namely, around any point, including periodic points,
and not just around generic points.

(b) The result holds for any «-mixing systems, while the best previous works [1] assumed a
polynomial rate of at least (1++/5)/2. Moreover, this strong-mixing condition is the weakest
among many kinds of mixing conditions, among them v, ¢, p, B, or absolutely regular, or /
or information regular. See Bradley [2].

(c) We also show that the exponential law holds when considering not just a cylinder set but even
a set which is a union of cylinders. Moreover, the cardinal of this union can be exponentially
large, with respect to the length of the cylinders.

Following the Galves and Schmitt [5] approach we get that the parameter of the exponential
law is the product A(A)u(A), where A(A) is a positive number related to the short recurrence
properties of the set A. For a description of these properties see Abadi [1]. In the aforementioned
paper, the authors show that for 1/-mixing systems, there exist two positive constants K, K’
such that K < A(A) < K’. In our case, the constant K does not exist, and one can have A(A)
arbitrarily small.

We prove our result by showing two other results which are interesting in themselves. In the
first one, we establish an ergodic relationship between the rescaled hitting time A(A)(A)t4 and
the equally rescaled return time. The idea of this result comes from a paper of Haydn et al. [7],
which established such a relationship for the rescaled ((A)t4 hitting time and return time. This
in general does not apply in our case since one can have A(A) 5# 1, for instance, around periodic
points. Even the proof follows a different approach.

The second result that we mentioned above reads as follows. The probability of observing a
cylinder of rank n, or even a union of them, in n consecutive observations, goes to zero with n
for ¢-mixing systems. Moreover, we show that the convergence is uniform on A. It only depends
on the cardinality of the union, and not on the choice of the cylinders. This is natural when
the measure of the set decays e.g. exponentially with n. But is far from obvious, and may even
be anti-intuitive, when the measure decays just polynomially fast with power less than 1, as is
covered by our case.

2. Statement of the results

Let A be a finite or countable set and let & = AN be the set of sequences. We endow X' with
the shift map 7. Given non-negative integers m < n and a point x € X' we denote by [x,, . .. x,]
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the cylinder of rank (m, n) containing x, that is

X .o cxn]l =y e Xiym =xmy ..., Yn = Xn}.

A cylinder of rank (0, n — 1) will be simply called of rank n. We denote by C;, the collection of
cylinders of rank (m, n) and by F,. the o-algebra generated by the partition C],,. Let F be the
o -algebra generated by the 7, s and p be a T-invariant probability measure on (X, F). Let

a(@)=sup  sup (AN B)— p(Au(B)

Mt ATy BeF,E

for any integer g. We assume that the system (X, T, 1) is @-mixing, in the sense that «(g) — 0 as
g — oo. This is the weakest notion of mixing among ¢-mixings and ¥/ -mixings. We emphasize
that we do not assume any summability condition on the sequence «(g).

Let A € ¥ be a measurable set. We define the hitting time of A by

T4(x) =inf{k > 1: T*x € A}, x e X.

We are interested in the distribution of the hitting time 74 on the probability space (X, 1), and
the return time, defined with the same formula, but on the probability space (A, u(-|A)) where
1(-]A) denotes the conditional measure on A.

Theorem 1. Suppose that the system (X, T, ju) is a-mixing. Then for any sequence A, € .7:6‘ -
such that u(A,) > 0 and

u(ta, <n) -0 asn— oo, (D
there exists some normalizing constant A(A,) > 0 such that the following hold:

e The hitting time of Ay, rescaled by A(A,))u(Ay,), converges in distribution to an exponential
distribution. Namely,
sup |/L()»(An),bL(An)‘L'An > 1) — exp(—t)| — 0 asn— oo.
t>0
The convergence is uniform on families of sets A,, where the convergence in (1) is uniform.
e The distribution of the return time is approximated by a convex combination of a Dirac mass
at zero and an exponential distribution. More precisely,

sup
t>s

A(AD) T RAD (A TA, > 1]An) — exp(—t)‘ 50 asn— oo,

forany s > 0.
e we have limsup A(A,) < 1.

Remark 2. We emphasize that in the theorem the set A,, does not have to be a cylinder of rank
n but only a union of cylinders of rank n. Moreover, even if A, is a cylinder, n does not have to
be equal to the rank of the cylinder; see Remark 9 for an instructive example.

The normalizing constant A(A,) may not converge in general; thus we cannot simply say that
the limiting distribution of the rescaled return time exists. Moreover, even if it converges, the
limit may not be equal to 1. For example a case of interest is when limA(A,) = 0 where we
still get a non-trivial exponential approximation, while without the extra factor A(A,) one would
Jjust obtain the rough statement that the rescaled hitting time w(A,)7a, — 400 and the rescaled
return time w(A,)ta, — 0 in distribution.
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In the next section we show that the hypothesis in the theorem holds for a broad class of
sequences of sets A,.

3. Rare events do not appear too soon

We present some explicit examples of sequences A, under which Theorem 1 applies, that
is when the condition (1) of the theorem is satisfied. They are consequences of Proposition 7
presented below.

The first example was the motivation of our work:

Example 3. For any a € AN the sequence of cylinders A, = [ap, ..., a,—1] satisfies the
hypothesis (1) of Theorem 1. Moreover, the convergence is uniform on a.

We emphasize that this approximation with an exponential distribution is valid for any point
a € Y, including for example periodic points. This generalizes the result in [6] which concerns
a.e. sequence a.

Returns to the cylinder [ao, ..., ay—1] in the example above means that there is a perfect
matching of the first n symbols. It turns out that for some applications the approximate matching
is more interesting:

Example 4. Approximate matching: Let a € AN and D € (0, 1). Denote for b € X by
dn(a,b) =card{i <n — 1:a; # b;} the Hamming distance of the first n symbols. Let

A, =1{be X:dy(a,b) < Dnj},

be the D% approximate matching of [ag, ..., a,—1]. Then there exists Dy > 0 such that for all
D € (0, Dy), the sequence A, satisfies the hypothesis (1) of Theorem 1.

In DNA sequence analysis the alphabet A is {A, C, G, T'}. For some sequences the entropy is
lower estimated by 1.7 bits per symbol (for example for the human gene HUMRETBLAS; see [8]),
which means that 4, = 1.71In2. This gives a value of Dy ~ 41%.

Proof. We count the number «,, of cylinders of rank n which compose the D% approximate
matching A,. We have

Dn
n
n < (card A — 1)
K /;(k) car
kzz;)(k) car
_ <1+D(card.A—1)>"
= DD .

We choose Dy > 0 as the smallest solution of (1 + D(card A — 1))/DP = &"+(T) and then
Proposition 7 applies for any D < Dy. U

Example 5. For aset K C Y, define its topological entropy by

1
hiop(K) = lim sup — log #{C: C cylinder of rank n s.t. C N K # (}.

n—oo N
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Denote by _7-'6‘_1(1{ ) the union of those cylinders C of rank n such that K N C # @. The

sequence A, = ]—'6‘71(1( ), under the assumption that hyp(K) < hy, satisfies the hypothesis
(1) of Theorem 1.

Example 6. Suppose that A, = A% U A} where A) and A} are F ~! measurable sets, and such
that lim /4 (A%) = 0 and A} satisfies the conditions of Example 5 above whenever it has positive
probability. Then, we have

w(ta, <n) < utgg < m)+ (g, <n) < np(AD) + iy, <n) = 0,
and therefore the hypothesis (1) of Theorem 1 is satisfied.
We emphasize that, in this example, the exponential growth of the number of cylinders of rank

n inside A, is not a priori bounded by the entropy of the measure, contrary to the case for the
preceding example.

Proposition 7. Suppose that (X, T, ) is an ergodic measure preserving system, not necessarily
o-mixing. Let (k) be a sequence of integers such that

1
limsup —logk, < h,(T).
n n

Then there exists a sequence €, — 0 such that, for any A, € fg ! Wwhich is the union of at most
kn cylinders of rank n, we have

/L(TA,, <n) < e,

We emphasize that the bound ¢, does not depend on the particular set A, but only on the
number of cylinders which compose it. Note that the statement pu(t4, < n) — O is trivial
whenever ((A,) < 1/n. However, even for o-mixing systems, there can exist some cylinders
A, of rank n such that ©(A,) > 1/n (see [3]).

When the system is «-mixing, the measure preserving transformation (7, n) is an exact
endomorphism and, in particular, its entropy 4, (T) is positive (we refer the reader to [4] for
details). In particular, Proposition 7 applies under the mixing hypotheses of Theorem 1.

Proof. Set o := limsup, %logkn andleth € (ho, h,(T)) and k € Nsuchthat hg < (1-1/k)h.
Let

I'(N)y={x:Yn> N, u([xg...xp—1]) < e—nh}.

By the Shannon—McMillan-Breiman theorem, w(I'(N)) — 1 as N — oo. Given an integer n,
let m = [n/k] be the smallest integer such that km > n. First, observe that by invariance we
have

u(ta, <n) <ku(ry, <m). )

By assumption we have A, = Ule C; for some integer £ < k;, and some cylinders C; €
Fy~l For j = 0tom — 1let C] be the element of F ™' which contains 7/C;. Let
U, = U;f’:_()l Ule Cij. We have {t4, <m} C T7"U,; hence,

w(ta, <m) < w(Up). 3)
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Moreover, the set U, is contained by construction in at most mk, cylinders of rank n — m;
therefore

w(U, N T (n —m)) < mpe”""™h,
On the other hand,

wUn \ I'(n —m)) < 1 — u(I'(n —m)).
Setting €, equal to k times the sum of the last two upper bounds proves the proposition in view
of 2)and 3). O

4. Proof of the main theorem

Our main theorem will be a direct application of this explicit estimation of the difference
between the hitting time statistics and the exponential distribution.

Theorem 8. Suppose that the system (X, T, ) is o-mixing. Let n be an integer. For any
Ae ]—'g ~1 there exists some constant A(A) € (0, 2] such that

sup |u(ta > k) — e_MA)“(A)k’ < 12\/2/,L(‘L'A <n)+a@).
keN

The value of the upper bound is not intended to be optimal, but is just there to emphasize that
it does not depend on the particular choice of the set A € .7-'(’)171 but only on the probability of
short hitting times u(tg < n).

Remark 9. We emphasize thatif A € .7-'6" ~! for some integer m, one can apply the theorem with
any integer n > m. It turns out that taking the minimal # is not always a good choice, even when
A is itself a cylinder set.

Consider for example the full shift (NN, T) with an o-mixing measure u such that (1) # 0.
For any k € N the set [k] is a rank 1 cylinder, but applying Theorem 8 with n = 1 has little
interest.

However, choosing ny = | 1//([k])] we get that p(tr) < ng) < ngpu([k]) = Oas k — oo.
Therefore Theorem 8 applied with n = nj gives that the distribution of the hitting time 4 is
asymptotically equal to that of an exponential with parameter A ([k]) 1 ([k]).

In the proof of the theorem we make use of the following lemma.

Lemma 10. Let n be an integer. For any A € Fy =1 such that

8§ :=3y2u(ta <n)+am) < 1/4,

there exists an integer s > 2n such that

p(ta =2n) +a@) _

<s)<3$ d s. 4
n(ta <s) <8 an A <s—2m) = “4)

Proof. Let us defined = 2u(t4 < n)+a(n). By hypothesis, d < 1/144. By invariance we have
u(ta < 2n)+an) <d.
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Let s > 2n denote the smallest integer such that
w(ta <s—2n) > d.
With this choice we have

u(ta < 2n) +a(n) -V
u(ta <s —2n) '

Furthermore, since u(tq4 <s —2n—1) < Jd , it follows from the invariance that

w(ta <) <p(ta <s—2n—1)+u(ta <2n) +pu(ta < 1) <vVd+2d <3v/d. O

Proof of Theorem 8. Let n be an integer and A € Fjy ~!. Let § be as in Lemma 10. There is
nothing to prove if § > 1/4 so we suppose that § < 1/4. Take s > 2n given by Lemma 10 such
that (4) holds.

To simplify the notation we drop the subscript A and write 7 = 74. Set H(k) = u(r > k),
and denote by 7!/l = 7 o T the first occurrence time starting at time ¢. For any integer j > 1
consider the modulus

[H(js) — H((j — 1)s)H(s — 2n)|. 6]
The sets

{r>jst={r > (j— Dsyn {7 > )
and

(1> —Dsyn{zlV=Ds+2 5 5 _2p)

differ by a subset of {r[/ —Dsl < 251} whose measure is by invariance bounded by u(r < 2n).
Furthermore, by mixing we get that

lu({z > (= Ds; V742 > 5 —2m)) — H((j — Ds)H (s — 2n)| < ar(n).
Thus the above expression (5) is bounded by
w(t <2n) + a(n).
Now, take g a positive integer. The absolute value
|H(qs) — H(s — 2n)7| (6)
is bounded by

q
Z |H(js)— H((j — 1)s)H(s —2n)|H(s —2n)47/.
j=1
We have just proved that the modulus in the above sum is bounded by pu(r < 2n) + a(n).
Summing over j we get that for all integers £ > 1 the modulus in (6) is bounded by
p( =2n) +am) _ 5.
uw( <s—-2n) ~

Moreover, any non-negative integer k can be written as gs +r withg = [k/s]and 0 <r < s.
Then

|H (k) — H(gs)| = u(r > gs; 191 < 1), 7

which, by invariance, is bounded by u(r < s) <.
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To finish the proof, set
In H(s — 2n)
n(A)y 7

and note that the mean value theorem gives

M(A) =

[H(s —20)*/s1 — H(s —2n)*/*| < —In H(s — 2n). (8)

Note that H (s —2n)K/s = e (ADAk By convexity we have — In(1 —u) < u/(1 —8) whenever
0 < u < §, and therefore

1 1
—InH(s —2n) < ﬂu(t <s—2n) < ﬁu(r <s) <26.

Putting together the three estimates for (6)—(8) gives the conclusion. Observe in addition that
M(A) <1/(1 —8) < 2since u(t <s) < su(A).

To drop the dependence of 1,,(A) on n and finish the proof, we define A(A) as the minimal A
which realizes the infimum

inf sup |u(rq > k) —e Ak O
2€(0,2] geN

Remark 11. The upper bound A(A) < 2 can be sharpened when § is small. In particular if
Sn — O0asn — oo we getlimsupA(A,) < 1.

We conclude this section with the proof of the main theorem. In view of Theorem 12, the
statement for hitting times in the main theorem (Theorem 1) and that for return times are
equivalent; hence it is sufficient to prove the first statement with F(z) = 1 — e/, which will
imply the second statement with G(s) = e™".

Proof of Theorem 1. For any real t > 0, taking k = ¢/ (A,)] in Theorem 8 gives
WO (A (Ap)Ta, > 1) —e™'| < 12y/2u(ta, < n) + a(n) + 21(Ay),

which proves the first statement. The uniform convergence in (1) implies that of this upper bound,
since

w(An) = p(ta, = 1) < u(ra, <n).

The second statement follows from Theorem 12. The third statement follows from
Remark 11. O

5. Hitting and returning: an adaptation of the Haydn-Lacroix—Vaienti theorem

Haydn et al. [7] have proved that the asymptotic distributions of hitting and return times t4,,,
rescaled by the measure ((A;), are related by an integral equation. Their result does not apply to
our setting because the asymptotic distribution does not exist in general, because the normalizing
constant does not converge in general.

We now give the generalization of their result adapted to our case, which deserves a new proof
since the technique needs to be somewhat different. Let

Fa(t) = p(A(A)p(A)ta < 1),

1
Gals) = mM(X(A)M(A)TA > s|A).
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F4 is the usual non-decreasing cumulative distribution function of the rescaled hitting time
A(A)(A)T4 while G 4 is a normalized non-increasing distribution function of the rescaled return
time A(A)u(A)ts. We recall that since F4 and G4 are monotonic, their convergences when
((A) — 0 on adense set or on all but countably many points are equivalent and we will simply
say that they converge.

Theorem 12. Suppose that the measure preserving system (X, T, ) is ergodic.

Let A, be a sequence of measurable sets such that W(A,) — 0. If Fa, converges to F as
n — oo then G,, converges to some function G, and the limits are related by the integral
equation

t
F(t) = F(0+)+/ G(s)ds (¥t > 0).
0

In particular, if the solution G is continuous then the convergence is uniform on [s, +00) for any
s > 0.

Reciprocally, if G 4, converges to G as n — 00 and fooo G(s)ds = 1 then Fa, converges to
some function F, and the limits are related by the same integral relation with F(0+) = 0. In
particular, F is continuous on [0, 00) and the convergence is uniform.

Proof. Let A be any measurable set with t(A) > 0. Note that 0 < F4(f) < 1 and 0 < G4(s) <
1/s for any s > 0, where this last upper bound follows from Markov inequality and Kac’s lemma:

1 w(A) 1
Gals) = — (A pu(A)tg > s|A) =< —— [ tadu(-|A) = —.
A(A) s s
First observe that by invariance one has for every integer n
n(ta =n) = pu(AN{ra = n}).
Therefore
1/AM(A)p(A)
Fa) = Y wAN{ra=n)

n=1
Lt/A(A)(A)]
= f w(AN{tg > r}dr.
0

Since w(A N {4 > r}) < u(A) we get by a change of variable

t
Falt) < / Ga(s)ds < Fa(t) + u(A).
0

For any 0 < # < ¢’ we get the relation

t t
/ G a(s)ds — u(A) < Fa(t)) — Fat) < / G a(s)ds + p(A). ©
t t

e Assume that Fy, converges to some function F and suppose for a contradiction that G4,
does not converge. By Helly’s selection principle, each subsequence of function must have an
accumulation point.! Therefore G 4, must have at least two different accumulation points G

1 Indeed, the space of decreasing functions g from (0, co) to itself such that g(s) < s, under the equivalence relation
of equality outside countable sets, is metrizable (e.g. a slight modification of the Levy metric) and compact (Helly’s
selection principle) and an accumulation point refers to this notion of convergence.
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and G». By dominated convergence, (9) gives that for all 0 < ¢ < ¢/

’

t
F(t'y—F(1) =/ Gi(s)ds (i =1,2). (10)
t

Hence G| = G a.e., a contradiction; thus G 4, converges. Lastly, the integral relation follows
from (10) by monotone convergence.

e Assume that G 4, converges to some function G. By Fatou’s lemma, the leftmost inequality
in (9) gives that for all 7 > 0,

t o0
/ G(s)ds < liminf Fy, (1); / G(s)ds < liminf (1 — Fa, (1))
0 n—00 ¢ n—00

and therefore under our assumption on the limit G, F4, converges to F' and

t
F(t):/ G(s)ds. O
0
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